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In this study, the limiting maximum drag-reduction asymptote for the moment co-
efficient of a rotating disk in a surfactant solution was obtained analytically. The
analysis, which was based on the logarithmic velocity profile of turbulent pipe flow
in the surfactant solution, was carried out using momentum integral equations of the
boundary layer, and the moment coefficient results agreed with experimental results
for maximum drag reduction in surfactant solution. Additionally, flow visualization
was performed using the tracer and the tuft techniques, which revealed that the direc-
tion of flow of surfactant solution on the disk was turned towards the circumferential
direction and the amplitude of the circular vortex on the rotating disk was reduced by
addition of surfactant solution. The experimental results for flow angle on a rotating
disk can be explained well with the analytical results.

1. Introduction
The drag reduction of surfactant solutions has attracted considerable attention

from the point of view of energy conservation because mechanical degradation does
not occur and the drag reduction ratio is higher than for polymer solutions in certain
cocentration ranges (Zakin & Chang 1974; Ohlendorf, Interthal & Hoffmann 1986).
Thus, many studies on drag reduction of surfactant solution have been conducted for
an internal flow (Bewersdorff & Ohlendorf 1988; Warholic, Schmidt & Hanratty 1999;
Zakin, Myska & Chara 1996). With regard to the mechanism of drag reduction due to
a surfactant solution, Ito, Imao & Sugiyama (1995) investigated the characteristics of
low-speed streaks in turbulent channel flow of surfactant solutions by the hydrogen-
bubble flow visualization technique and clarified that the non-dimensional wall-normal
distance of the centre of streamwise vortices was greater in flows with a large drag
reduction ratio compared with that in Newtonian fluid flow. Kawaguchi et al. (1996)
found using LDV techniques that streamwise and tangential components of turbulent
intensity and Reynolds shear stress of surfactant solutions increased near to the
wall. Considering the physical properties of surfactant solutions, Usui, Ito & Saeki
(1996) reported that the apparent viscosity of surfactant solution showed a significant
dependence on temperature and approximated that of tap water in high-shear-rate
regions.

On the other hand, in order to improve the energy efficiency of complete closed
loop systems, it is necessary to reduce not only frictional losses but also power losses
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in turbo-machinery with surfactant solutions. In general, the frictional resistance of
an enclosed rotating disk is closely related to estimates of frictional losses due to
the impeller in the turbo-machinery. Although it is important to calculate the drag
reduction of the frictional resistance of a rotating disk by adding surfactant additives
in order to reduce the power loss of the turbo-machinery, there have been few studies
on the frictional resistance of a rotating disk in surfactant solutions. With regard
to rotating disk flow, Ogata & Watanabe (1999) reported on the drag reduction of
surfactant solutions for an enclosed rotating disk by measuring the torque acting on
the disk. The test surfactant solution was Ethoquad O/12 with sodium salicylate. It
was shown that the drag reduction of the surfactant solution was dependent on both
solution concentration and temperature, and the maximum drag reduction ratio was
approximately 30%.

It is necessary to estimate the minimum moment coefficient in practical applications
of a rotating disk in a drag-reducing surfactant solution. Two analytical methods can
be used to obtain the minimum values of frictional resistance of a rotating disk. The
first method uses the Navier–Stokes equation; the second involves the application
of the momentum integral equations for a boundary layer. The first method is not
suitable for obtaining the moment coefficient of a rotating disk, since the rheological
equation of surfactant solutions has not yet been derived. The second method is
applicable, since analysis is possible if the velocity profiles of the boundary layer are
known, and the logarithmic velocity profiles in pipe flow have been presented in many
studies. Additionally, in the case of dilute polymer solutions, the final velocity profile
for maximum drag reduction has been obtained (Virk, Mickley & Smith 1970). If
the velocity profile in pipe flow can be used to obtain the moment coefficient of a
rotating disk with maximum drag reduction, the results using the momentum integral
equations for a boundary layer on a rotating disk can be used to estimate the limit
of drag reduction due to surfactant solutions. As mentioned above, there are little
data available pertaining to the velocity profile of a rotating disk flow in a surfactant
solution at present.

The purpose of this study is to obtain the limiting maximum drag-reduction
asymptote for the moment coefficient of a rotating disk in a surfactant solution.
Analysis was carried out using momentum integral equations of the boundary layer
on a rotating disk based on the logarithmic velocity profile of turbulent pipe flow
in a surfactant solution. The experimental torque measurment and flow visualization
results were used to confirm the validity of the analytical results, and the experimental
results for the moment coefficient for maximum drag reduction and the flow pattern
could be explained well by the analytical results.

2. Analysis
2.1. Moment coefficient of a rotating disk

Figure 1 shows the flow model used in the analysis. The disk is rotated at a constant
angular velocity ω in a fluid of infinite extent, and there is a boundary layer on the
rotating disk surface. If r, θ and z are cylindrical polar coordinates, ur and uθ are the
velocity components of the fluid in the directions of r and θ and the axial velocity
component is neglected, then the momentum integral equations of the boundary layer
on the rotating disk are

d

dr

(
r

∫ δ

0

u2
r dz

)
−
∫ δ

0

u2
θ dz = −τrr

ρ
, (1)
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Figure 1. Flow model of velocity profiles in boundary layer on a rotating disk in a fluid at rest.

d

dr

(
r2

∫ δ

0

uruθdz

)
= −τθr

2

ρ
, (2)

where τr and τθ are shearing stress components at the surface, δ is the boundary layer
thickness, and ρ is the fluid density.

It is well known that the logarithmic velocity profiles in a circular pipe cover a
wide range of Reynolds numbers. If τ0 = ρν2∗ represents shearing stress at a wall, and
u is the velocity near the disk wall, the logarithmic velocity profile is

u+ = A loge y
+ + B, (3)

where u+ = u/ν∗ and y+ = ν∗z/ν.
The constants A and B are generally known semi-empirically to be A = 2.5 and

B = 5.5 for Newtonian fluids, hence the logarithmic velocity profile for Newtonian
fluids is

u+ = 2.5 loge y
+ + 5.5. (4)

Virk et al. (1970) obtained the ultimate velocity profiles for dilute polymer solutions,
in the maximum drag-reduction range for a circular pipe as follows:

u+ = 11.7 loge y
+ − 17 (5)

Figure 2 shows the experimental results for velocity profiles for surfactant solutions
presented in other studies (Bewersdorff & Ohlendorf 1988; Ito et al. 1995; Zakin et
al. 1996; Warholic et al. 1999). Additionally, from their experimental data, Zakin et
al. proposed the following equation for surfactant solutions:

u+ = 23.4 loge y
+ − 65. (6)

However, as shown in figure 2, the logarithmic velocity profiles in surfactant
solutions are different from (6), and Zakin et al. suggested that (6) was not the best
velocity profile. Thus, with reference to the experimental data in figure 2, the following
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Figure 2. Non-dimensional velocity profiles for surfactant solutions. e, Re = 1.3× 105; �, 4.1× 104

for pipe flow (Zakin et al. 1996); �, Re = 1.5 × 104 for4 channel flow (Warholic et al. 1999); •,
Re = 1.2 × 104 for channel flow (Ito et al. 1995); 4, Re = 2.5 × 104; N, 1.2 × 105 for pipe flow
(Bewersdorff & Ohlendorf 1988).

equation for the logarithmic velocity profile of surfactant solutions is assumed in this
study:

u+ = 20.4 loge y
+ − 47. (7)

It is clear that (7) agrees better with the experimental data for surfactant solutions
than (6) in figure 2.

For Newtonian fluids, based on the logarithmic velocity profile of turbulent pipe
flow, Goldstein (1935) and Ito (1963) reported analytical results for the moment
coefficient of a rotating disk by using momentum integral equations of the boundary
layer on a rotating disk. With reference to their analysis, the moment coefficient of
a rotating disk in a drag-reducing surfactant solution was calculated by applying (7)
for the velocity profiles of the boundary layer on the disk.

If u is the velocity near the rotating disk surface, the radial and tangential compo-
nents of velocity profiles are assumed as follows (Goldstein 1935):

ur =
α√

1 + α2
u, (8)

uθ = ωr − 1√
1 + α2

u, (9)

where α is a constant related to the flow direction.
The boundary conditions are

ur = 0, uθ = ωr at z = 0,

ur = 0, uθ = 0 at z = 0.

By substituting (3) into (8) and (9), and transforming the equations to satisfy the
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boundary conditions, the velocity profiles are obtained as

ur =
α√

1 + α2

(
ωr
√

1 + α2 + Aν∗ loge

z

δ

)(
1− z

δ

)
, (10)

uθ = − Aν∗√
1 + α2

loge

z

δ
. (11)

The radial and tangential components of shearing stress acting on a disk wall are
obtained as (Goldstein 1935)

τr =
α√

1 + α2
τ0, (12)

τθ = − 1√
1 + α2

τ0. (13)

By substituting (10)–(13) into (1) and (2), we obtain

d

dr

[(
1

3
− 11

9

Aν∗
ωr

+
85

54

(
Aν∗
ωr

)2
)
r3α2δ

]
− 2

(
Aν∗
ωr

)2

r2δ = − 1

A2

(
Aν∗
ωr

)2

r3α,

(14)

d

dr

[(
3

4

Aν∗
ωr

+
7

4

(
Aν∗
ωr

)2
)
r4αδ

]
=

1

A2

(
Aν∗
ωr

)2

r4. (15)

Now, the values of functions α and δ can be assumed to be

α = α1

Aν∗
ωr

+ O

[(
Aν∗
ωr

)2
]
, (16)

δ = δ0 + O

(
Aν∗
ωr

)2

, (17)

where α1 and δ0 are functions of r.
For large Reynolds numbers, the high-order terms involving (Aν∗/ωr) are very

small. Thus, these expressions may be reduced by neglecting high-order terms. By
substituting (16) and (17) into (14) and (15) and neglecting the high-order terms, the
equations for α1 and δ0 become

d

dr
r2α2

1δ0 = 6r2δ0 (18)

d

dr
α1δ0 +

4

r
α1δ0 =

4

3A2
, (19)

so that

α =

√
3

2

Aν∗
ωr

, (20)

δ =
4

15A2

√
2

3
r. (21)

The moment acting on one side of the disk is

M = −2π

∫ a

0

r2τθ dr = 2πρa2

∫ δ

0

uruθ dz.
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On evaluation of the integral forms (10), (11), (20) and (21), we find that

M =
4πρa5ω2α2

45A2(1 + α2)

(
3
√

1 + α2 − 7
√

2√
3
α

)
. (22)

Thus, the moment coefficient acting on one side of the disk wall is

Cm =
M

1/2ρω2a5
=

8πα2(3
√

3(1 + α2)− 7
√

2α

45
√

3A2(1 + α2)
. (23)

For the boundary condition u = ωr
√

1 + α2 at z = δ, (3) becomes

ωr
√

1 + α2

ν∗
= A loge

ν∗δ
ν

+ B. (24)

By substituting (21) and (23) into (24), we obtain the moment coefficient acting on
one side of the disk from the following simple formula:

1√
Cm

= m log10(Re
√
Cm) + n, (25)

where

m =
A

2

√
15
√

3

π(3
√

3(1 + α2)− 7
√

2α)
loge 10,

n =

√
3A

2
√

(1 + α2)

√
5
√

3(1 + α2)

π(3
√

3(1 + α2)− 7
√

2α)

(
loge

(
8α

45A3

)
+
B

A

)

−m loge 10 log10

 2α

3A

√
2π(3

√
3(1 + α2)− 7

√
2α)

5
√

3(1 + α2)

 ,

and Re = ωr2/ν is the Reynolds number.
As mentioned above, α is a function related to the flow angle φ near the rotating

disk, where α = − tanφ. In this study, the value of α was assumed from experimental
results for flow angle on the rotating disk. By substituting α in (25), the moment
coefficient of a rotating disk can be calculated exactly.

2.2. Flow angle

In order to clarify the mechanism of drag reduction, it is important to elucidate the
flow angle near the rotating disk. The flow angle can be considered an important
physical quantity on the basis of an examination of the drag-reduction mechanism.

In general, the flow angle φ near the rotating disk can be written as

tanφ = −τr/τθ. (26)

Combining (12), (13), (20) and (26), we obtain

tanφ =

√
3

2

Aν∗
ωr

. (27)

By substituting (21) and (27) into (24), we obtain the flow angle as a function of
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A, B and Re: √
1 + tan2 φ

tanφ

√
3

2
= loge

(
8

45

tanφ

A3
Re

)
+
B

A
. (28)

3. Experimental results and discussion
3.1. Moment coefficient of rotating disk

Experiments were carried out to measure the torque acting on one side of a rotating
disk in housing. Details of the experimental apparatus and results were reported by
the authors in a previous paper (Ogata & Watanabe 1999). The apparatus consisted
of two rotating disks: a test rotating disk and a support disk. The test rotating disk
was made of aluminum, and was 180 mm in diameter and 3 mm thick. The support
disk covered one side and the edge of the test disk. The two disks were rotated at
the same speed in the same direction. The torque on one side of the test rotating
disk was measured directly using strain gauges cemented to the top of the shaft. The
clearance s between the test disk and stator was 10 mm. Test surfactant solutions
were aqueous solutions of Ethoquad O/12(C18H35N(C2H4OH)2CH3Cl, Lion Co.) at
concentrations of 50, 100, and 200 p.p.m., and sodium salicylate (C7H5NaO3) was
added as a counterion. The experiments were performed with the temperature of the
surfactant solution maintained at t = 18 and 28 ◦C.

It was confirmed that the moment coefficient on an enclosed rotating disk was
reduced by surfactant solutions and that the drag reduction of the surfactant solution
depended on both concentration and temperature. The maximum drag reduction
ratio was approximately 30% in 200 p.p.m. Ethoquad O/12 solution at Re = 5× 105.

The values of the moment coefficient of a rotating disk for maximum drag reduction
for several concentrations of surfactant solutions are plotted in figure 3. It can be seen
that the data approximates the solid line labelled 2, Cm = 1.85(s/a)−1/2Re−1/2 (Daily
& Nece 1960) for the enclosed rotating disk, for all concentrations of the surfactant
solution. This suggests that the minimum value of the data for surfactant solutions
did not vary in this Reynolds number range.

3.2. Flow visualization and flow angle

Flow visualization was performed using the tracer and the tuft techniques (Ogata &
Watanabe 2000). The tracer technique was applied by mixing aluminium powder in
the test solution in the approximate concentration of 0.2 mg l−1. A laser unit with a slit
was used to generate a flat beam (90×0.5 mm). Photographs of streaks of aluminium
powder within 0.5 mm of the disk surface were captured. In the tuft technique, tufts
0.1 mm in diameter and 1.5 mm in length were cemented onto the rotating disk wall
at r = 35, 45, 55, 65, 75, 85 mm and 48 tufts were used in total. The condition of
the clearance ratio (s/a) was as in the torque measurement experiment. The disk was
rotated clockwise, and the tuft pattern measured using a stroboscope.

Figures 4 and 5 show the flow visualization results from the tracer technique
at Reynolds numbers of Re = 2.5 × 105 and 3.5 × 105, respectively. The camera
shutter speed was 1/60 s. Figures 4(a) and 5(a) show the flow visualization results
for tap water, and figures 4(b) and 5(b) show the flow visualization results for
200 p.p.m. Ethoquad O/12 solution. The Reynolds number of the surfactant solution
was calculated using the viscosity of tap water. In the case of s/a = 0.115, Daily &
Nece (1960) reported that the transition to turbulent flow began at Re = 2.8 × 104
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Figure 3. Moment coefficient of a rotating disk. �, �, �, Ethoquad O/12 solutions with 50,
100 and 200 p.p.m. counterion respectively (Ogata & Watanabe 1999); e, 50 p.p.m. Separan; •,
tap water (Watanabe 1978); f1 , Cm = 0.073Re−1/5, for a free disk in turbulent flow (Kármán
1921); f2 , Cm = 1.85(s/a)1/10Re−1/2, for an enclosed disk in laminar flow (Daily & Nece 1960); f3 ,

Cm = 1.935Re−1/2, for a free disk in laminar flow (Kármán 1921).

and that turbulence in the boundary layer began at Re = 1.5 × 105. Thus, figures 4
and 5 represent the transition and turbulent flow ranges, respectively.

For tap water, two or three white streaks in tangential directions, are seen in
figure 4(a). These streaks represent flow vortices on the rotating disk and appear in
the transition to turbulent flow. In the case of the Ethoquad O/12 solution shown
in figure 4(b), the streaks did not appear clearly. If the contrast between dark and
light strips is strong, the vortices near the rotating disk can be considered to be
powerful because the reflected light intensity of the aluminium powder indicates the
strength of the flow. Therefore, the vortices in the Ethoquad O/12 solution were
weaker than those in tap water. Hence, the surfactant solution reduces the amplitude
of the circular vortex on a rotating disk. In addition, the flow direction near the disk
is turned towards the outward direction by the surfactant solution.

The streaks are not clear in figure 5(a) because the flow was turbulent. In figure 5(b),
the contrast between the dark and light stripes of the Ethoquad O/12 solution is not
stronger than that of tap water. This suggests that the surfactant solution reduces the
turbulent flow directional quality.

The results of flow visualization by the tuft technique are shown in figure 6.
Examples of the tuft pattern for Ethoquad O/12 solution and tap water are placed
side by side for the same Reynolds number Re = 4.2 × 105, and the relative angles
of tufts evaluated. The flow angles were obtained from the tangent line of the tufts,
and experimental flow angle results are shown in figure 7. For comparison, the
experimental results for flow angle in dilute polymer solutions are also shown (Bilgen
1971; Watanabe 1978). It can be seen that the flow angles for a surfactant solution are
larger than those for a Newtonian fluid in the turbulent flow range of the Reynolds



Limiting maximum drag-reduction asymptote 333

ω

Streaks

ω

(a) (b)

Figure 4. Flow patterns near a rotating disk at Re = 2.5× 105. (a) Tap water, (b) 200 p.p.m.
Ethoquad O/12 solution.

(a) (b)

ω ω

Figure 5. Flow patterns near a rotating disk at Re = 3.5× 105. (a) tap water, (b) 200 p.p.m.
Ethoquad O/12 solution.

number. In other words, the flow direction near the disk is turned outwards by the
surfactant solution.

Additionally, calculated results from (25) for the turbulent range of the Reynolds
number are shown in figure 7. Analysis of flow angle on the rotating disk was carried
out by substituting (4), (5) and (7) into (28). It is shown that the analytical results
provide different flow angles for different test fluids. The calculated results decrease
with increasing Reynolds number for surfactant and polymer solutions, but the results
for Newtonian fluid remain constant and demonstrate no dependence on Reynolds
number. It is seen that the experimental results for surfactant and polymer solutions
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Figure 7. Flow angles on a rotating disk. •, �, Present data, surfactant and tap water, respectively;e, �, Separan AP30 and tap water for a free disk, respectively; �, Separan AP30 for an enclosed
disk (Watanabe 1978); 4, Separan AP 273 (Bilgen 1971).

agree well with the analytical results in the range Re < 7 × 105, and it was clarified
that the flow angles for a surfactant solution are larger than those for a polymer
solution.

Consequently, the increased flow angle on the rotating disk and decreased amplitude
of a circular vortex due to surfactant solutions led to drag reduction for the rotating
disk.
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Surfactant Polymer Newtonian

Goldstein Ito
Eq. (29) Eq. (30) Eq. (32) Eq. (31) (1935) (1963)

m 16.2 18.7 10 2.4 2.78 3.51
n −52.6 −64.0 −26.2 2.3 0.46 −2.26

Table 1. Comparison of parameters in (25): 1/
√
Cm = m log10(Re

√
Cm) + n

3.3. Limiting maximum drag-reduction asymptote

The limiting maximum drag-reduction asymptote for the moment coefficient of a
free disk in a surfactant solution based on the experimental results for the moment
coefficient of a rotating disk and flow angle will be derived in this section.

As shown in figure 7, the flow angle on the disk for a surfactant solution decreases
gradually with increasing Reynolds number. However, for simplification, we assume a
flow angle of φ = 45◦ from the experimental and analytical results such that α = −1.

By substituting the coefficients A = 20.4; B = −47 of (7) and α = −1 into (25),
we obtain the values m = 16.2 and n = −74.7. Goldstein (1935) suggested that it is
necessary to modify the values of m and n using experimental data, since the velocity
profiles of the boundary layer are approximated by the velocity profiles of circular
pipe flow.

Little experimental data exists for a free disk in the case of surfactant solutions.
It is well known that the value of the moment coefficient of an enclosed rotating
disk decreases by approximately one-half since the fluid in the chamber rotates at
approximately one-half of the angular velocity of the disk in this Reynolds number
range. Therefore, in this study, experimental data for a free rotating disk are correlated
with those for an enclosed rotating disk.

When the coefficient is corrected by assuming that the experimental result for
surfactant solution approximates the solid line labelled 2 in figure 3, we obtain
the formula of the limiting maximum drag-reduction asymptote for the moment
coefficient of a rotating disk in a surfactant solution:

1√
Cm

= 16.2 log10(Re
√
Cm)− 52.6. (29)

Equation (29) is shown in figure 3, and is seen to agree with data for surfactant
solutions, even if the parameter m is not modified. As mentioned above, (29) is
not directly comparable with the experimental results for the enclosed rotating disk.
However, in figure 3, (29) shows the behaviour of the moment coefficient of the free
disk in a surfactant solution.

For comparison, in the case of the velocity profile of a surfactant solution given in
(6), the same calculation procedure was followed. These calculated results are shown
in table 1, and the formula using (6) was as follows:

1√
Cm

= 18.7 log10(Re
√
Cm)− 64. (30)

It is seen in figure 3 that the moment coefficient of (30) is smaller than that of
(29) in the large Reynolds number range, but the difference may be very small in the
Reynolds number range Re < 2× 106.
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The moment coefficient of a rotating disk in a Newtonian fluid was calculated in
the same manner as that in a surfactant solution. By substituting the coefficients of
(4) into (25), and assuming a flow angle of φ = 30◦, we obtain m = 2.4 and n = −2.0.
Modifying the coefficient of n using Kármán’s turbulent flow formula (curve 1 in
figure 3) Cm = 0.073Re−1/5 (von Kármán 1921), we obtain the moment coefficient for
Newtonian fluid as follows:

1√
Cm

= 2.4 log10(Re
√
Cm) + 2.3. (31)

Equation (31) is also shown in figure 3. Goldstein (1935) and Ito (1963) obtained
the formulae for the moment coefficient for a Newtonian fluid by modifying both
coefficients m and n based on experimental data. Table 1 shows a comparison of these
coefficients. The formulae are also shown in figure 3. It is seen that (31) agrees well
with Goldstein’s formula in the range 105 < Re < 2× 106.

In order to ascertain the significance of the maximum drag-reduction asymptote
for a surfactant solution, it is necessary to obtain a corresponding equation for a
dilute polymer solution in which the drag reduction of a rotating disk occurred as
in (29). For dilute polymer solutions, Watanabe (1978) reported experimental data
for the moment coefficient of a disk in a large tank. The experimental results for
the maximum drag reduction are shown in figure 3. The flow angle of the polymer
solution is assumed to be φ = 40◦ from experimental results in previous studies
and results presented in this study. By substituting (5) and φ = 40◦ into (25), we
obtain m = 10 and n = −37. Modifying the coefficient n using experimental results
for maximum drag-reduction, we also obtain the formula of the limiting maximum
drag-reduction asymptote for the moment coefficient of a rotating disk in a dilute
polymer solution:

1√
Cm

= 10 log10(Re
√
Cm)− 26.2. (32)

As shown in figure 3, good agreement between experimental data and (32) is
obtained in the range Re < 7× 105.

It can be seen that the moment coefficient for a surfactant solution decreases
compared with that of a dilute polymer solution, and the tendency is similar to that
of pipe flow.

As a result of this analysis, a linear relationship between the coefficient α in (3) and
m in (25) is found, and m does not require modification by experimental results. This
suggests that the slope of the moment coefficient can be calculated directly using the
slope of the logarithmic velocity profiles of pipe flow. Thus, it can be considered that
the slope of the moment coefficient represents the limit of the drag reduction due to
surfactant solutions.

4. Conclusions
The limiting maximum drag-reduction asymptote for the moment coefficient of

a rotating disk was obtained analytically in drag-reducing surfactant solutions and
polymer solutions. Analysis was carried out using momentum integral equations of
the boundary layer on a rotating disk based on the logarithmic velocity profile of
turbulent pipe flow. The analytical results agreed quantitatively with experimental
results of maximum drag reduction for surfactant and polymer solutions. It has been
shown that the moment coefficient for a surfactant solution decreases compared with
that of a dilute polymer solution.
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Flow visualization was performed using the tracer and tufts techniques. It was
clarified that the amplitude of a circular vortex of surfactant solution decreased
and the flow near the disk wall was turned towards the circumferential direction in
the transition to turbulent flow range. The results show that the flow angles of a
rotating disk in surfactant solution were larger than those in Newtonian fluids; and
the experimental results could be explained by the analytical result.

Consequently, an increased flow angle on the rotating disk and a decreased ampli-
tude of the circular vortex due to the surfactant solution led to drag reduction for
the rotating disk.

This research was supported a Grant-in-Aid for the Encouragement of Young Sci-
entists, No. 12750145 from the Scientific Research Fund of the Japanese Government.
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